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Introduction and Background - Calculus I

1. Local Extrema and Absolute Extrema

a.

A Local Maximum exists if a point a is on an interval of a function and the

corresponding f(a) value is larger than all other f(X) values in that interval. For any
given interval, the local maximum corresponds to the largest y value for any given
X value along the interval.

A Local Minimum exists if a point b is on an interval of a function and the
corresponding f(b) value is larger than all other f(X) values in that interval. For any
given interval, the local minimum corresponds to the smallest y value for any
given x value along the interval.

These definitions can be extended to a function of n variables by interchanging
f(x) with f(X;,X,,Xs,...X,) and comparing at any point (a,b,c,...n) along the interval of
the function which f(a,b,...n) value has the largest or smallest value at any interval
of the function.

An Absolute Maximum occurs at a point a if f(a) at that point is larger than f(x)

for all X in the domain of the function. This means there is no higher f(x) value for
that function.

An Absolute Minimum occurs at a point b if f(b) at that point is smaller than f(x)
for all X in the domain of the function. This means there is no lower f(x) value for
that function.

These definitions can be extended to a function of n variables by extending f(X) to
f(X,,X,.X3,...X,) and comparing at any point (a,b,c,..n) which f(a,b,c,...n) value is the
largest or smallest across the entire domain of that function.

A Critical Point is a point a along the domain of the function f at which f6(a)=0 or
Does Not Exist. These values correspond to absolute or local extrema.

This definition can extend to functions of more variables. Instead of taking fo(x),
the partial derivatives of the function will be used. When d@b.e-M —0 an absolute

X
or local extrema occurs.

2. The Extreme Value Theorem and Fermat’s Theorem

a.

The Extreme Value Theorem: In order for this theorem to uphold, the function

must be continuous on the interval and the interval must be closed and bounded.
The conclusions that can be drawn from this theorem are either an absolute
maximum value or absolute minimum value on the interval.

Fermat’s Theorem: The conditions for this theorem are if the function has a local

extrema and the function is differentiable at that point. The conclusion is, that at
this point, fo(x)=0.



3. Possible Implications

a.

If one applies a theorem without meeting all conditions, the conclusion that one
comes to is false. For example, if you evaluate a function on an open interval
instead of a closed interval, the conclusion that you will come to using the
Extreme Value Theorem will be wrong because it is not applying the theorem
correctly.

4. Identifying and Classifying Local Optima

a.

The First Derivatives Test: Given a continuous function on an interval with a

critical point ¢, where the function is differentiable (although the function does
not need to be differentiable at c), the derivative changes. To find a global
maximum or minimum, check f(x) at each point. If fo(X) changes from positive to
negative as X increases through ¢, then f has a local maximum at c. If fo(x) changes
from negative to positive as X increases through c, then f has a local minimum at
c. If fo(x) is positive or negative on either sides of C, there is no extreme value at C.
The Second Derivatives Test: Given a continuous second derivative on an open

interval containing a critical point and the derivative at that critical point equal to
zero, the extreme values can be classified. If f06(c)>0, then f is concave up,
indicating a curve pointing up and signifying that f has a local minimum at c. If
f00(c)<O0, then f is concave down, indicating a curve pointing down and signifying
that f has a local maximum at c. If f66(c)=0 then the Second Derivatives Test is
inconclusive, and one must look at the First Derivatives Test to classify the
potential extrema.

5. Using The First and Second Derivatives Test

a.

The First Derivatives Test

f(x)=3x*-4x3-6x>+12x+1

fo(x)=12x3-12x2-12x+12
=12(x3-x?-x+1)
=12(x+1)(x-1)?

Iffo(x)=0,  0=12(x+1)(x-1)?

0=(x-+1)(x-1)? x=-1,1



X P<x<-1 l<x<l1 l1<x<b

(x) - + +

f(x) b W W

Minimum at x = -1

b. The Second Derivatives Test:
f(x)=3x*-4x3-6x2+12x+1
fo(x)=12x3-12x-12x+12

=12(x3-x>-x+1)  =12(x+1)(x-1)?
f00(x)=36x%-24x-12  =12(x-1)(3x+1)
f00(x)=12(3x*-2x-1)
Critical Points
12(x+1)(x-1)*=0 x=-1,1

Critical Point (c) | fod(c) | Conclusion

-1 + | Concave up, local minimum

1 0 Second Derivatives Test is
inconclusive, but First
Derivatives Test showed no
local extreme at this value.

c. Extreme Value Theorem

There is an absolute maximum at a and an absolute minimum at ¢ due to the
Extreme Value Theorem.



Background Continued - Calculus 3

6. Critical and Saddle Points

a.

Critical Points

Briggs theorem states that if you take gradient of a function at a given point on a
set domain, and each component is zero, then the point is a critical point. It also
states that if a partial at a given point does not exist, then that is also a critical
point.

7. First and Second Derivatives Tests

a.

First Derivatives Test

For Theorem 5, the function must be once differentiable on the interval from a to
b, and there must be a minimum or maximum value on the function. If these hold,
then the first partial with respect to any given variable is zero.

Second Derivatives Test

For Theorem 6, the function must be continuous and twice differentiable.
Additionally, the gradient of the function at the given point must be zero. If these
hold, then we can use the Hessian of the second partials to determine whether a
point is a local maximum, minimum or a saddle point. The exception is where the
Hessian is equal to 0, where there can be no conclusion.

8. Possible Implications

a. Using a theorem when not all the parameters is met is likely to give wrong

information or break the function. For instance in Theorem 6, if you try to twice
differentiate a function that does not have a second derivative, much confusion
and frustration will ensue, and finding an answer will be impossible. Similarly, if
Theorem 5 is used when parameters are not met, the conclusion that the partials
are equal to 0 would not necessarily hold. For instance, if the point (a, b) is not a
maximum or minimum, then there will be a slope at (a, b) in the direction of at
least one variable, so the assumption that the partial is equal to 0 would be wrong
and mess up a computation.

9. Extending the First Derivatives Test

a. The Second Derivatives test in Calculus I determined concavity, either positive or

negative, of the overall function. Similarly, Theorem 12.14 determines the overall
direction of a function with two or more variables with an almost direct analog of
max, min, or saddle points. This basic construction of the ultimate direction of a
function at a given point is effective because it takes into consideration both
variables, as seen in Theorem 12.14. This is trickier with the First Derivatives test
because there are multiple variables. This problem is exemplified with a saddle



point, where the point appears to be a minimum point in one direction, but is
actually a maximum point if viewed in relation to another variable. This problem
makes it impractical to use a first derivatives test as was done in Calculus I.

10. Finding Extreme Values Using the Second Derivatives Test
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11. Optimality
a. Local Optimali
One can only assume local optimality if the domain is open because when the
domain is open, one can always extend the parameters and find the function either
increases or decreases to infinity. In the case of x* on an open domain, while there
is a minima, y increases to infinity therefore a maxima is undefined.



b. Global Optimality
On a closed domain, one is guaranteed global optimality at some points because

when there is a defined maximum for the domain, there also must be defined
extrema on the range. As the extension states, the extrema may either be defined
within the domain or on the boundary of the domain.

12. Absolute Extreme Values Over a Closed Domain
a. Find Extrema for f(x) = x> +2 on the closed interval of D{ x| —4 <x <4}

0 = x* +2 , )
§oo-2x ]
O:=ax X-=0 x =-4 X4
X=0  forl)2 Ywe-wiy fweute2

-2  fvleaa  {W@-t6e2

,,,,,, B ) Lo L SR ) |

) , [0,.1) ﬁl},,w) (#,19)
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13. Extending Extreme Values
a. For functions of 3 or more variables, we expect that this result will extend to
encompass critical points on surfaces and higher order functions. When the
domain is defined, there must be points of extrema for the function as when the
domain/surface is limited, the range must similarly be limited for a continuous
function.

14. Method of Lagrange Multipliers

a. Conditions
For the conclusion of the Lagrange Multipliers to hold for three or more variables,
the function f and the constraint function g must be differentiable on a region
" where n is the number of variables in the constraint. It must also hold that ‘© g
# 0! on the curve g = 0.

b. Conclusions
The conclusion from this procedure is that the points (x,,X,,...) with the largest and
smallest corresponding function values are maximum and minimum values on the
function f .

15. Systems of Equations in Lagrange Multipliers
a. The system of equations in (i) must be true at any extreme point because it is
already given that both functions are differentiable on the interval, and €©g is not



a zero vector. The system holds true, as the gradients must be related by a
constant multiplier.

16. Lagrange Multipliers and Extreme Value Theorem
a. The method of Lagrange multipliers is used to find extreme values given an

objective function and a constraint function. This method is used to find extreme
values for functions of two or more variables. The Extreme Value Theorem is
used to find extreme values along an interval of a function of one variable. These
are similar because the method of Lagrange multipliers and the Extreme Value
Theorem are both used to find extrema, the only difference being the number of
independent variables. Another key difference is that the Extreme Value Theorem
deals with a function on a closed interval. On that interval, the Extreme Value
Theorem can tell you the absolute maximum or minimum value. The method of
Lagrange multipliers, however, is used to find absolute maximum or minimum
values depending on the constraint function. Instead of being limited to an
interval, the method of Lagrange multiplier is constrained to a function.

17. Absolute Extreme Values of a Function of Two Variables
a. Method of Lagrange Multipliers
Objective function: f(X,y)=2x?+y*+2
Constraint function: g(x,y)=x*+4y*4=0
Objective function is an elliptic paraboloid, constraint function is an ellipse.
Of(x,y)=<4x,2y>
Og(x,y)=<2x,8y>
f =ag, f,=og, X2+4y%-4=0
4x =a(2x) 2y =2(8y) X2+4y%-4=0
x(2- #)=0 y(1-43)=0 X2+4y%-4=0
x=0, 8=2 y=0, 2=1
If x=0, (0)*+4y*4=0,y=+1
If y=0, x>+4(0)%-4=0, x=+2
Critical Points: (0,-1),(0,1),(-2,0),(2,0)
f(0,-1)=3
f(0,1)=3
f(-2,0)=10
f(2,0)=10
The maximum value of f given this constraint function is 10, this occurs both at

(-2,0) and (2,0). The minimum value of f given this constraint function is 3, this
occurs both at (0,-1) and (0,1)



Two Constraint Problem

18. Two Constraint Problem
a. Method of Lagrange Multipliers with Two Constraints

Given a Paraboloid, Cylinder, and Point, calculate the point on the curve where
the paraboloid and cylinder intersect that is closest to the given point.
Paraboloid: z=x?+2y?

Cylinder: xX*+y?=1

Point: (2,-2,3)

This problem is trying to minimize the distance to the point. The objective
function will be the distance formula using the point given.

Objective Function: f(x,y,z)= \/ (X—2)2+(y+2)* +(z-3)*

Constraint Functions: g(X,y,z)= z-X>-2y?
h(x,y,2)=x?+y*1
x—2 y+2 7-3
N2+ y+2 @37 T N2+ (y+2)y @37 | N2 Hy+2)+(z-3)
og(x,y,2)= <-2x, -4y, 1 >
Oh(x,y,z)= < 2x, 2y,0>
Systems of Equations

Of(x,y,2)= <

— X—2 —af_

1.f =ag,+eh, N T =a(-2x)+€(2X)
= y2 =a(-

21, = og+eh, = () +e2)
= z—3 —

3.f, =ag,+eh, N =a(1)+¢(0)

4. Z=X*+2y?

5. X2+y?=1



Finding Minimum Distance using Lagrange

NSolve[Grad[F[x, y, z], {x, ¥, 2}] =AGrad[G[x, vy, Z], {X, ¥, 2}] +uGrad[H[x, ¥, 2], {X, ¥, Z}] &8 Xx*2+y"2 =1 && x"2+2yr2 =2,
{%y ¥y Z, A, u}, Reals]

{{u—--1.327, 1> -0.527967, z > 1.8109, x »0.434859, y » -0.900499}, {u > -0.0765725, A » -0.448378, z » 1.11507, x - -0.940708, y » 0.339218}}
FindMinimum[{((X=-2) 22+ (y+2) A2+ (2=-3)A2)A(1/2), X2 +yA2 =18&&XxA2+2xy"2 =22}, {X, V¥, 2}]

{2.25223, {x - 0.434859, y > -0.900499, z > 1.8109}}

FindMaximum[{ ((x-2) A2+ (Y +2) A2+ (2-3)A2) A (1/2), xA2+yA2 == 18&XA2+2xyN2 222}, {X, ¥, 2}]

[4.20389, [x > -©.940708, y - 0.339218, z > 1.11507}}

Pointl = Graphics3D[{PointSize[.05], Red, Point[{-0.940708, 0.339218, 1.11507}]}];

Point2 = Graphics3D[{PointSize[.B5], Green, Point[{0.434859, -0.900499, 1,8109}]}];

Show[surface4, surface2, surface3, Pointl, Point2]

19. Three Constraint Problem with a Function of Four Variables
a. Objective Function  f(w,X,y,z)= wx+x2+3y*+z3
Constraint Functions g,(W,X,y,z)= x?+y?+z?=4
9,(W,X,y,z)= wxyz=3
05(W,X,Y,2)= WX+Xy+yz=2
Of= < x, w+2x, 6y, 32 >
09,=<0, 2x, 2y,2z>
Og,= < Xyz, Wyz, WXZ, WyX >
Og,= <X, Wy, X+z,y >
Systems of Equations

1. x=a(0)+ e(xyz)+ q(x)

2. W+2x= 3(2x)+ g(wyz)+ d(w+y)
3. 6y= a(2y)+ e(wxz)+ d(x+2)

4, 3z%= 3(2z)+ g(wxy)+ d(y)

5. X2+y2+72=4

6. wxyz=3

7.

WX+XY+Yyz=2



20. Global Maxima Over a Closed Interval

a. Based on the Extreme Value Theorem from Calculus I, the absolute extreme
values of a linear function, f(x), graphed over a closed interval [a,b] will occur at
the endpoints of the domain, x=a and x=b. This is exemplified in the following
two examples. The linear function f(x)=x+3 graphed over the closed interval [0,5]
has an absolute minimum at x=0 and an absolute maximum at x=5. The absolute
minimum occurs at the point (0,3). The absolute maximum occurs at the point
(5,8). These points are labeled in red.

Fl[x ] =x+3;

Graphl = Plot[f1[x], {x, @, 5}, AxesLabel » {HoldForm[x], HoldForm[f1[x]]}, PlotLabel » None, LabelStyle -+ {GrayLevel[0]}, PlotRange » {0, 108},
Prolog + {Red, PointSize[.02], Point[{{©, 3}, {5, 8}}1}]

(x)
10

The linear function f(x)=15-2x graphed over the closed interval [5,10] has an
absolute minimum at x=10 and an absolute maximum at x=5. The absolute
minimum occurs at the point (10,-5). The absolute maximum occurs at the point
(5,5). These points are labeled in red.

f2[x_]1=15-2*x;

Graph2 = Plot[f2[x], {x, 5, 18}, AxesLabel - {HoldForm[x], HoldForm[f2[x]]}, PlotLabel -+ None, LabelStyle + {GrayLevel[@]}, PlotRange » {-16, 108},
Prolog » {Red, PointSize[.02], Point[{{1@, -5}, {5, 5}}1}]

2(x)
10




21. Global Extremes

a. It is not possible for a linear function on the closed interval [a,b] to have global
extremes that occur between a and b. All linear functions are continuous and
differentiable on a closed interval. By the First Derivative Test, the slope of a
linear function remains constant throughout this interval. Thus, there are no
critical points that occur in the interval, and therefore the endpoints are the only
values that need to plugged into the original function to determine the value of the
function. This reasoning supports that for a linear function on [a,b] the global
extrema will only occur at a and b. A counterargument might be that a continuous
piecewise function with all linear pieces on [a,b] would have a global extrema that
would occur between a and b. However, where the linear pieces meet, a corner
will occur. Thus, differentiability fails at corners and the First Derivative Test
would not be applicable at this point.

22. Linear Programming
a. Given the following constraints, the domain of the problem graphed.

Non-negativity constraints:

X220

RegionPlotl = RegionPlot[x 2 0, {x, @, 10}, {y, 0, 10}] ;
y20

RegionPlot2 = RegionPlot[y 2 0, {x, 0, 10}, {y, 0, 10}]1;

Main constraints:

X+ys5

RegionPlot3 = RegionPlot[x+y <5, {x, 0, 10}, {y, 0, 10}];
X-2%ys2

RegionPlot4 = RegionPlot[x-2»y <2, {x, 0, 10}, {y, 0, 10}];
-2xX+ys2

RegionPlot5 = RegionPlot[-2xx +y <2, {x, 0, 10}, {y, 0, 10}];

RegionPlot6 = Show[RegionPlotl, RegionPlot2, RegionPlot3, RegionPlot4, RegionPlot5]






